Machine Learning adalah
Pembelajaran mesin atau machine learning adalah bagian dari artificial intelligence (AI) atau kecerdasan buatan yang melibatkan pembuatan algoritma dan model yang memungkinkan komputer belajar dari data dan meningkatkan kinerjanya pada tugas tertentu. Ini adalah proses mengotomatiskan pembuatan model analitis dengan menggunakan metode statistik dan algoritma untuk melatih sistem komputer membuat prediksi atau keputusan berdasarkan data. Intinya, machine learning adalah cara belajar komputer untuk mengenali pola dalam data dan menggunakan pola tersebut untuk membuat prediksi atau keputusan.
Ada tiga jenis utama machine learning yaitu: supervised learning, unsupervised learning, dan reinforcement learning.
Ini adalah jenis machine learning dimana model dilatih pada data berlabel. Data berlabel adalah data yang memiliki keluaran atau variabel target yang diketahui yang coba diprediksi oleh model. Tujuan supervised machine learning adalah untuk mempelajari fungsi pemetaan dari variabel input ke variabel output dengan menggunakan dataset pelatihan berlabel. Dengan kata lain, model dilatih pada data yang telah diklasifikasikan atau diberi label, dan menggunakan data berlabel ini untuk memprediksi output untuk data baru yang tidak terlihat. Contohnya adalah masalah klasifikasi dan regresi.
Ini adalah jenis pembelajaran mesin dimana model dilatih pada data yang tidak berlabel. Data yang tidak berlabel adalah data yang tidak memiliki keluaran atau variabel target yang diketahui. Tujuan unsupervised machine learning adalah mempelajari struktur atau distribusi data yang mendasarinya dengan menemukan pola dan hubungan dalam data. Dengan kata lain, model dilatih pada data yang belum diberi label atau diklasifikasikan, dan harus menemukan pola dan strukturnya sendiri. Contohnya adalah pengelompokan dan deteksi anomali.
Ini adalah jenis pembelajaran mesin dimana model belajar membuat keputusan berdasarkan umpan balik dari lingkungan. Model dilatih untuk memaksimalkan sinyal umpan balik yang diberikan oleh lingkungan. Tujuan reinforcement machine learning adalah untuk mempelajari suatu kebijakan, yang merupakan pemetaan dari keadaan menjadi tindakan, yang memaksimalkan imbalan kumulatif yang diharapkan dari waktu ke waktu. Dengan kata lain, model dilatih untuk membuat keputusan yang menghasilkan imbalan kumulatif yang tinggi dalam jangka panjang. Contohnya adalah game, robotika, dan kendaraan otonom.
Pembelajaran mesin memiliki banyak aplikasi praktis, termasuk pengenalan gambar, pemrosesan bahasa alami, deteksi penipuan, dan sistem rekomendasi. Misalnya, algoritma pembelajaran mesin dapat digunakan untuk mengenali wajah dalam foto, memahami arti teks tertulis, atau mengidentifikasi transaksi penipuan dalam data keuangan.
Model pembelajaran mesin juga digunakan untuk mendukung sistem rekomendasi yang memberikan rekomendasi untuk dipersonalisasi pada produk atau konten berdasarkan perilaku pengguna di masa lalu (yang pernah dilakukan). Salah satu keuntungan utama machine learning adalah dapat membantu organisasi mengotomatiskan proses dan membuat keputusan berbasis data yang ada.
Dengan menganalisis data dalam jumlah besar dan mengidentifikasi pola, algoritma pembelajaran mesin dapat membantu bisnis mengoptimalkan operasional perusahaan dan meningkatkan produk dan layanan. Namun, pembelajaran mesin juga memiliki beberapa tantangan, termasuk kebutuhan akan data berkualitas tinggi, potensi hasil yang bias, dan kesulitan dalam menafsirkan dan menjelaskan keputusan yang dibuat oleh model.
Jenis-Jenis Machine Learning
Terdapat berbagai jenis ML yang diklasifikasikan berdasarkan teknik belajar yang digunakan. Beberapa jenis ML yang umum adalah:
Business Intelligence
Akhir-akhir ini, kamu dapat menemukan perusahaan yang menggabungkan kemampuan machine learning ke dalam tools dalam bidang Business Intelligence. Hal ini dianggap mampu membuat setiap tools mengidentifikasi wawasan tersembunyi secara lebih efektif. Otomatisasi antara dua dunia ini dapat mengungkap proses wawasan yang belum diketahui pebisnis di luar sana. Meskipun di luarnya sebuah bisnis punya pemasukan yang lancar, ternyata penting untuk mengungkap detail tersembunyi dari angka penjualan tersebut.
Machine learning adalah teknologi yang dapat menganalisis perbedaan antara beberapa produk dengan kinerja penjualan optimal dengan yang mengalami penurunan. Wawasan yang mampu kamu peroleh lebih cepat akan memungkinkan bisnis bertindak lebih cepat berdasarkan informasi akurat. Otomatisasi memungkinkan pengerjaan tugas-tugas dengan value tinggi ketika terjadi otomatisasi antara machine learning dengan BI.
Semi-Supervised Learning
Data yang diolah menggunakan data berlabel dan tidak berlabel. Biasanya digunakan dengan metode klasifikasi, regresi, dan prediksi. Contoh machine learning jenis ini adalah proses identifikasi wajah seseorang pada webcam atau kamera smartphone.
Mulai Belajar Menjadi Data Scientist dari Sekarang!
Tahukah kalian bahwa data scientist kini sangat banyak diminati oleh berbagai kalangan. Data scientist merupakan profesi terseksi di abad ini serta gaji dan jenjang karirnya pun cukup menjanjikan. Jadi, Untuk mengetahui lebih lanjut terkait data scientist kita dapat mempelajarinya di DQLab lohh. Caranya sangat mudah, yaitu cukup signup di DQLab dan nikmati momen belajar gratis bersama DQLab dengan mengakses module gratis dari R, Python atau SQL!
Penulis : Latifah Uswatun Khasanah
Editor : Annissa Widya Davita
Beberapa tahun terakhir, banyak yang mulai mempelajari Machine Learning. Hal ini tidak lepas dari perkembangan teknologi komputasi dan penyimpanan data yang semakin murah. Namun tidak semua orang mengerti apa itu Machine Learning. Ada beberapa pertanyaan yang sering disampaikan:
Sekarang, mari kita ambil kesimpulan dari percakapan berikut:
Secara definisi, machine learning atau pembelajaran mesin adalah ilmu atau studi yang mempelajari tentang algoritma dan model statistik yang digunakan oleh sistem komputer untuk melakukan task tertentu tanpa instruksi eksplisit. Machine learning bergantung pada pola dan kesimpulan. Untuk mendapatkan pola dan kesimpulan tersebut, algoritma machine learning menghasilkan model matematika yang didasari dari data sampel yang sering disebut dengan ‘training data.’
AI ini mengacu pada prosedur pemrograman komputer (machine) untuk mengambil suatu yang rasional. Apa itu rasional? Rasional adalah dasar dalam mengambil keputusan
Sebagai contoh, AI digunakan untuk memeriksa apakah parameter tertentu dalam sebuah program berperilaku Normal. Misalnya, mesin dapat menimbulkan alarm jika parameter mengatakan ‘X’ melintasi ambang batas tertentu yang pada gilirannya dapat mempengaruhi hasil proses terkait.
Machine Learning adalah subset dari AI dimana mesin dilatih untuk belajar dari pengalaman masa lalu. Pengalaman masa lalu dikembangkan melalui data yang dikumpulkan, kemudian menggabungkan dengan algoritma (seperti Naïve Bayes, Support Vector Machine (SVM)) untuk memberi hasil akhir.
Statistik adalah cabang matematika yang memanfaatkan data baik dari keseluruhan populasi atau sampel untuk melakukan analisis dan menyajikan kesimpulan. Beberapa teknik statistik yang digunakan adalah regresi, varians, standar deviasi, probabilitas bersyarat dan lainnya.
Mari kita pahami dari contoh berikut. Misalkan, saya perlu memisahkan kiriman di inbox email saya menjajdi dua kategori, yaitu ‘spam’ dan ‘penting’. Untuk mengidentifikasi email spam, saya dapat menggunakan algoritma Machine Learning yang dikenal sebagai Naïve Bayes yang akan memeriksa frekuensi kiriman spam masa lalu. Untuk mengidentifikasi email baru sebagai spam, Naïve Bayes menggunakan teori statistik Baye’s Theorem (umumnya dikeal sebagai probabilitas bersyarat). Oleh karena itu, kita dapat mengatakan algoritma Machine Learning menggunakan konsep statistik untuk melakukan pembelajaran mesin.
Deep Learning dikaitkan dengan algoritma jaringan saraf tiruan – Artificial Neural Network (ANN) yang menggunakan konsep otak manusia untuk memudahkan pemodelan fungsi yang berubah-ubah. ANN membutuhkan sejumlah besar data dan algoritma ini sangat fleksibel dalam hal menghasilkan bayak keluaran secara bersamaan. Baca artikel mengenal deep learning!
Data Mining digunakan untuk mencari informasi yang spesifik, sedangkan Machine Learning berkonsentrasi untuk melakukan tugas tertentu. Sebagai contoh untuk membantu perbedaan antara Machine Learning dan Data Mining, mengajar seorang cara menari adalah Machine Learning, sedangkan menggunakan seseorang untuk mencari pusat tarian terbaik di kota adalah Data Mining.
Machine Learning melibatkan proses struktural dimana setiap tahap membangun versi mesin yang lebih baik. Untuk penyederhanaan, proses Machine Learning bisa dibagi menjadi 3 bagian:
Sebagai contoh: Supervised Learning digunakan saat perusahaan pemasaran mencoba untuk mengetahui pelanggan mana yang cenderung berpindah atau mencari supplier lain. Algoritma ini juga bisa digunakan untuk memprediksi kemungkinan terjadinya bahaya seperti gempa bumi, tornaod dan lain-lain, dengan tujuan untuk mengetahui Total Nilai Asuransi. Beberapa conntoh algoritma yang digunakan adalah: Nearest Neighbour, Naïve Bayes, Decision Tree, Regression, dan lain-lain.
Untuk membedakan antara Supervised Learning dan Reinforcement Learning, dapat dicontohkan, sebuah mobil menggunakan Reinforcement learning untuk membuat keputusan rute mana yang harus ditempuh, kecepatan berapa yang harus dikemudikan, dimanan beberapa pertanyaan tersebut diputuskan setelah berinteraksi dengan lingkungan.
Sedangkan memperkirakan ongkos taksi dari satu tempat ke tempat lain adalah Supervised Learning
Google dan Facebook adalah dua contoh perusahaan yang menggunakan Machine Learning secara ekstensif untuk mendorong iklan masing-masing ke pengguna yang relevan. Contoh penggunakan Machine Learning yang lainnya adalah :
Sumber : Article : Machine Learning basics for a newbie – www.analyticsvidhya.com
Jika Anda tertarik untuk menguasai machine learning, Anda dapat mengikuti Kelas Pelatihan Machine Learning di Inixindo Jogja.
Penyesuaian Diri dan Berbasis Data
Tidak seperti metode analisis tradisional yang statis dan kaku, ML dan DL adalah teknik yang menyesuaikan diri dan berbasis data. Artinya, algoritma ML dan DL dapat terus belajar dan beradaptasi seiring dengan ketersediaan data baru. Hal ini memungkinkan mereka untuk meningkatkan akurasi dan efektivitas seiring berjalannya waktu. Selain itu, algoritma ML dan DL dapat memberikan wawasan dan rekomendasi yang dipersonalisasi berdasarkan data pengguna tertentu.
ML dan DL merevolusi komputasi dan analisis data, membuka kemungkinan baru untuk otomatisasi, efisiensi, dan pemahaman berbasis data. Dengan kekuatan komputasinya yang tinggi dan kemampuan analitisnya yang canggih, ML dan DL telah menjadi teknologi penting yang mendorong inovasi dan kemajuan di berbagai industri.
Puskomedia, sebagai perusahaan teknologi masa depan, berkomitmen untuk memberikan layanan dan pendampingan terbaik di bidang ML dan DL. Dengan pengalaman dan keahlian kami, kami dapat membantu Anda memanfaatkan kekuatan ML dan DL untuk meningkatkan efisiensi bisnis, memperoleh wawasan yang berharga, dan membuat keputusan yang lebih tepat. Percayakan kepada kami sebagai mitra teknologi andal Anda dalam perjalanan transformasi digital Anda.
Yo, sobat netizen kece!
Mampir dong ke website www.puskomedia.id buat baca-baca artikel kece tentang teknologi di pedesaan. Udah banyak banget artikel seru yang ngebahas gimana cara memanfaatkan teknologi buat ngembangin desa kita.
Jangan cuma baca sendiri, yuk kita bagi-bagi info bermanfaat ini ke semua temen-temen kita. Klik tombol share di bawah artikel terus sebarkan ke grup medsos, WhatsApp, atau platform lainnya.
Buat yang penasaran pengin baca-baca lebih lanjut, cus langsung aja klik-klik artikel lainnya di www.puskomedia.id. Dijamin nggak bakalan nyesel, soalnya bahasannya asik dan informatif banget!
Mari bersama-sama kita dorong kemajuan teknologi di pedesaan, menuju desa yang lebih maju dan sejahtera.
Machine learning (ML) adalah cabang khusus dari kecerdasan buatan (AI). ML memiliki lingkup dan fokus yang terbatas dibandingkan dengan AI. AI mencakup beberapa strategi dan teknologi yang berada di luar lingkup machine learning.
Berikut adalah beberapa perbedaan utama di antara keduanya.
Tujuan dari setiap sistem AI adalah agar mesin menyelesaikan tugas manusia yang kompleks secara efisien. Tugas semacam itu dapat melibatkan pembelajaran, pemecahan masalah, dan pengenalan pola.
Di sisi lain, tujuan dari ML adalah agar mesin menganalisis data dalam volume besar. Mesin akan menggunakan model statistik untuk mengidentifikasi pola dalam data dan memberikan hasil. Hasil tersebut memiliki probabilitas kebenaran atau tingkat kepercayaan yang terkait.
Bidang AI mencakup berbagai metode yang digunakan untuk memecahkan beragam masalah. Metode ini mencakup algoritma genetik, jaringan neural, deep learning, algoritma pencarian, sistem berbasis aturan, dan machine learning itu sendiri.
Dalam ML, metode dibagi menjadi dua kategori besar: pembelajaran yang diawasi dan pembelajaran tanpa pengawasan. Algoritma ML dengan pengawasan belajar untuk memecahkan masalah menggunakan nilai data yang berlabel input dan output. Pembelajaran tanpa pengawasan bersifat lebih eksploratif dan mencoba menemukan pola tersembunyi dalam data yang tidak berlabel.
Proses pembangunan solusi ML biasanya melibatkan dua tugas:
Ilmuwan data memilih fitur data penting dan memasukkannya ke dalam model untuk pelatihan. Mereka terus menyempurnakan set data dengan data yang diperbarui dan pemeriksaan kesalahan. Kualitas dan keberagaman data akan meningkatkan keakuratan model ML.
Membangun produk AI biasanya merupakan proses yang lebih kompleks sehingga banyak orang memilih solusi AI prabangun untuk meraih tujuan mereka. Solusi AI ini umumnya telah dikembangkan setelah melakukan penelitian selama bertahun-tahun, dan developer membuat solusi tersebut dapat diintegrasikan dengan produk serta layanan melalui API.
Solusi ML memerlukan set data beberapa ratus titik data untuk pelatihan, ditambah daya komputasi yang cukup untuk dijalankan. Tergantung aplikasi dan kasus penggunaan Anda, instans server tunggal atau klaster server kecil mungkin sudah cukup.
Sistem cerdas lainnya mungkin memiliki persyaratan infrastruktur yang berbeda-beda, yang bergantung pada tugas yang ingin Anda capai dan metodologi analisis komputasi yang Anda gunakan. Kasus penggunaan komputasi tinggi membutuhkan beberapa ribu mesin yang bekerja bersama-sama untuk mencapai tujuan yang kompleks.
Namun, perlu diperhatikan bahwa baik fungsi AI maupun ML prabangun saat ini sudah tersedia. Anda dapat mengintegrasikannya ke dalam aplikasi melalui API tanpa perlu sumber daya tambahan.
Algoritma machine learning adalah metode dimana sistem artificial intelligence mengerjakan tugasnya secara otomatis. Umumnya algoritma machine learning ini digunakan untuk memprediksi nilai output dari input yang diberikan. Dua proses utama dari algoritma machine learning adalah klasifikasi dan regresi.
Algoritma machine learning sendiri dibagi menjadi dua, yaitu supervised dan unsupervised learning. Supervised learning membutuhkan data input dan data output yang diinginkan dan digunakan untuk membuat pelabelan, sedangkan algoritma unsupervised learning bekerja dengan data yang tidak diklasifikasikan atau tidak diberi label.
Contoh algoritma unsupervised learning adalah pengelompokan atau clustering data yang tidak difilter berdasarkan persamaan dan perbedaan. Pada artikel kali ini, kita akan membahas algoritma supervised learning, yaitu algoritma klasifikasi atau classification.
Terkadang sulit memutuskan algoritma machine learning mana yang paling baik untuk klasifikasi diantara banyaknya pilihan dan jenis algoritma klasifikasi yang ada. Namun, ada algoritma klasifikasi machine learning yang paling baik digunakan dalam masalah atau situasi tertentu.
Algoritma klasifikasi ini digunakan untuk klasifikasi teks, analisis sentimen, deteksi spam, deteksi penipuan, segmentasi pelanggan, dan klasifikasi gambar. Pilihan algoritma yang sesuai bergantung pada kumpulan data dan tujuan yang akan dicapai.
Lalu apa saja algoritma klasifikasi terbaik tersebut? Yuk simak artikel kali ini hingga akhir!
Source: Thanmai Chandaka
Decision tree membangun model klasifikasi dan regresi dalam bentuk struktur pohon. Algoritma ini menguraikan kumpulan data menjadi himpunan bagian yang lebih kecil dan menghubungkannya menjadi pohon keputusan yang terkait. Tujuan utama dari algoritma decision tree adalah untuk membangun model pelatihan yang digunakan untuk memprediksi nilai variabel target dengan mempelajari aturan keputusan. Aturan ini disimpulkan dari data training yang sebelumnya telah diinput. Keuntungan algoritma ini adalah mudah dimengerti, mudah menghasilkan aturan, tidak mengandung hiper-parameter, dan model decision tree yang kompleks dapat disederhanakan secara signifikan dengan visualisasinya.
Decision tree membangun model klasifikasi dan regresi dalam bentuk struktur pohon. Algoritma ini menguraikan kumpulan data menjadi himpunan bagian yang lebih kecil dan menghubungkannya menjadi pohon keputusan yang terkait.
Tujuan utama dari algoritma decision tree adalah untuk membangun model pelatihan yang digunakan untuk memprediksi nilai variabel target dengan mempelajari aturan keputusan. Aturan ini disimpulkan dari data training yang sebelumnya telah diinput.
Keuntungan algoritma ini adalah mudah dimengerti, mudah menghasilkan aturan, tidak mengandung hiper-parameter, dan model decision tree yang kompleks dapat disederhanakan secara signifikan dengan visualisasinya.
Baca juga : Yuk Kenali Macam-Macam Algoritma Machine Learning!
Machine Learning dan Deep Learning: Meningkatkan Kemampuan Komputasi dan Analisis Data
Teknologi semakin maju, kita memasuki era society 5.0 yang mengandalkan teknologi untuk memenuhi kebutuhan masyarakat. Nah, sebagai pemain teknologi masa depan, Puskomedia hadir mengedukasi kita soal perkembangan teknologi terbaru seperti Machine Learning (ML) dan Deep Learning (DL). Mari kita telusuri lebih jauh kemampuan komputasi dan analisis data yang semakin dahsyat ini!
ML merupakan teknologi kecerdasan buatan yang memungkinkan komputer belajar dari data tanpa diprogram secara eksplisit. Salah satu subset ML yang lagi naik daun adalah DL. Memangnya apa bedanya? Kalau ML menggunakan algoritma sederhana, DL menggunakan jaringan saraf tiruan yang meniru cara kerja otak manusia. Jaringan ini terdiri dari banyak lapisan yang memungkinkan komputer menganalisis data yang kompleks dan menemukan pola tersembunyi yang mungkin terlewatkan oleh kita.
Random Forest Classifier
Algoritma Random Forest Classifier merupakan salah satu algoritma klasifikasi machine learning yang paling populer. Seperti namanya, algoritma ini bekerja dengan cara membuat hutan pohon secara acak. Semakin banyak pohon yang dibuat, maka hasilnya akan semakin akurat.
Dasar dari algoritma random forest adalah algoritma decision tree. Keuntungan dari algoritma ini adalah dapat digunakan u8ntuk rekayasa fitur seperti mengidentifikasi fitur yang paling penting diantara semua fitur yang tersedia dalam dataset training, bekerja sangat baik pada database berukuran besar, sangat fleksibel, dan memiliki akurasi yang tinggi.
4. Support Vector Machine
Support Vector Machine atau biasa dikenal dengan algoritma SVM adalah algoritma machine learning yang digunakan untuk masalah klasifikasi atau regresi. Namun, aplikasi yang paling sering digunakan adalah masalah klasifikasi.
Algoritma SVM banyak digunakan untuk mengklasifikasikan dokumen teknis misalnya spam filtering, mengkategorikan artikel berita berdasarkan topik, dan lain sebagainya. Keuntungan algoritma ini adalah cepat, efektif untuk ruang dimensi tinggi, akurasi yang bagus, powerful dan fleksibel, dan dapat digunakan di banyak aplikasi.
Bcaa juga : Bootcamp Machine Learning and AI for Beginner
Di era big data, machine learning merupakan salah satu teknologi yang banyak dicari. Hal ini menyebabkan meningkatnya minat belajar algoritma machine learning. Karena sebagian besar menggunakan data berukuran besar, maka tools yang digunakan pun tidak sembarangan dan perlu keahlian untuk mengaplikasikan tools tersebut. Ingin belajar machine learning beserta tools-nya? Yuk bergabung bersama DQLab!
DQLab adalah platform edukasi pertama yang mengintegrasi fitur ChatGPT yang memudahkan beginner untuk mengakses informasi mengenai data science secara lebih mendalam.
DQLab juga menggunakan metode HERO yaitu Hands-On, Experiential Learning & Outcome-based, yang dirancang ramah untuk pemula. Jadi sangat cocok untuk kamu yang belum mengenal data science sama sekali. Untuk bisa merasakan pengalaman belajar yang praktis dan aplikatif, yuk sign up sekarang di DQLab.id atau ikuti Bootcamp Machine Learning and AI for Beginner berikut untuk informasi lebih lengkapnya!
Penulis: Galuh Nurvinda K
Machine Learning is a disruptive technology that holds great promise and this course will be presented from an interpreter’s perspective, not a data scientist. This course will provide an understanding of how Machine Learning for interpretation is being utilized today and provide insights on future directions and trends.
Teknologi semakin berkembang pesat dan sebagian besar berdampak positif diberbagai sektor kehidupan. Perkembangan teknologi ini didalamnya juga termasuk muncul dan berkembangnya machine learning. Untuk memahami lebih lanjut mengenai contoh machine learning dan cara kerja machine learning, mari bersama menyimak tulisan dibawah ini:
Machine Learning dan Deep Learning: Meningkatkan Kemampuan Komputasi dan Analisis Data
Di era digital ini, volume data yang begitu besar terus membanjiri dunia maya. Menelusuri dan mengelola data semacam itu menjadi sebuah tantangan, namun teknologi kecerdasan buatan (AI) menawarkan solusi melalui dua pilar utamanya, yaitu Machine Learning (ML) dan Deep Learning (DL). Kedua teknologi ini merevolusi kemampuan komputasi dan analisis data, membawa kita pada babak baru inovasi.
Contoh Machine Learning Adalah:
Penerapan machine learning tidak hanya bisa diterapkan di sektor teknologi saja, tapi bervariasi di berbagai sektor industri. Bahkan, perkembangan machine learning telah mengubah berbagai industri untuk menemukan pola dalam data besar untuk membuat keputusan dan prediksi berdasarkan hasil analisis data. Berikut contoh penerapan machine learning dalam berbagai sektor:
Penerapan machine learning di industri kesehatan digunakan untuk mendeteksi pola yang terkait dengan kondisi kesehatan atau penyakit dengan mempelajari ribuan catatan perawatan kesehatan dan data pasien. Selain itu, machine learning juga bisa membantu mendeteksi berbagai penyakit yang akan datang. Bahkan, algoritma machine learning juga bisa diterapkan di berbagai macam perangkat pembantu kesehatan seperti mengukur kadar oksigen, detak jantung pasien, hingga memberikan notifikasi kepada dokter apabila ada masalah yang terjadi pada pasien secara real time.